Nonlinear Polarization Beats Spectroscopy

Alain Villeneuve, G.I. Stegeman, Stewart Aitchison and C.C. Yang

It is difficult to find third order nonlinear optical materials with ultrafast response and low loss that satisfy material figures of merit defined for all-optical switching. The key problem is to be able to achieve a 2πn2ILeff/λ > π nonlinear Phase shift where n2 I is the nonlinear index change and Leff is one absorption α-1 > Leffwith the absorption α containing linear α0 and nonlinear β2I + β3I2 + .. contributions where β2 and β3 are the two and three photon absorption coefficients, respectively. To date, these figures of merit have been satis- Fraction of the power output into the bar and cross channels of a one -half beat length nonlinear directional coupler when the input intensity in one channel (bar) is varied. fied by glasses and a few organic materials. As a result, it has proven very difficult to make efficient all-optical switching and demultiplexing devices in integrated optics formats. Below one half the bandgap of a semiconductor, the two photon absorption approaches zero and the linear absorption can also be very small. For example, for Al0.18GaO.82As, which has a bandgap at 750 nm, operation at 1550 ran satisfies these conditions very well and we find that total nonlinear phase shifts >5π are achievable with low loss and sub-picosecond response. This wavelength is also very attractive for communications.

This article is only available as a PDF.

Download PDF

Publish Date:

Nonlinear Polarization Beats Spectroscopy

Alain Villeneuve, G.I. Stegeman, Stewart Aitchison and C.C. Yang

It is difficult to find third order nonlinear optical materials with ultrafast response and low loss that satisfy material figures of merit defined for all-optical switching. The key problem is to be able to achieve a 2πn2ILeff/λ > π nonlinear Phase shift where n2 I is the nonlinear index change and Leff is one absorption α-1 > Leffwith the absorption α containing linear α0 and nonlinear β2I + β3I2 + .. contributions where β2 and β3 are the two and three photon absorption coefficients, respectively. To date, these figures of merit have been satis- Fraction of the power output into the bar and cross channels of a one -half beat length nonlinear directional coupler when the input intensity in one channel (bar) is varied. fied by glasses and a few organic materials. As a result, it has proven very difficult to make efficient all-optical switching and demultiplexing devices in integrated optics formats. Below one half the bandgap of a semiconductor, the two photon absorption approaches zero and the linear absorption can also be very small. For example, for Al0.18GaO.82As, which has a bandgap at 750 nm, operation at 1550 ran satisfies these conditions very well and we find that total nonlinear phase shifts >5π are achievable with low loss and sub-picosecond response. This wavelength is also very attractive for communications.

Log in or Become a member to view the full text of this article.

This article may be available for purchase via the search at Optica Publishing Group.

Optica Members get the full text of Optics & Photonics News, plus a variety of other member benefits.

Publish Date: 01 December 1992


Add a Comment

Share this Article

ADVERTISEMENT
ADVERTISEMENT

Also in this Issue

Nonlinear Phase Shifts Using Second Order Nonlinearities

Excited State Enhancement of Nonlinear Optical Properties

200 fsec Optical Pulse Generation from a Hybrid Mode-locked Semiconductor Diode Laser-Amplifier System

Optical Dephasing and Acoustic Plasmon Undamping in Highly Excited Semiconductors

Propagation-Induced Escape from Adiabatic Following in a Semiconductor

Guiding Light by Light Using Dark Spatial Solitons

Kink Solitons in Nonlinear Optics

Coherent Optical Wavelet Transforms

Femtosecond Waveform Processing via Spectral Holography

Quantum Optics of a Single Molecule in a Solid

New Questions in the Multiphoton Ionization of Atoms

The ac Stark Shifts of High-Lying Rydberg Levels in Intense Electromagnetic Fields

Near-Field Magneto-Optics and High Density Storage

Visible Subwavelength Point Source of Light

Multi-Mode Interference Optical Devices Based on Self-Imaging Effects

Sidelobe-Suppressed Acousto-Optic Filter

Monolithically Integrated 21-Wavelength DFB Laser Array with a Star Coupler and Optical Amplifiers

Monolithic InP Grating-Based Wavelength Division Multiplexing Components

Wavelength Selective Optical Logic

Optical Wavelength Shifter for Wavelength-Division-Multiplexed Networks

Broadband Dispersion Compensation for High-Bit-Rate Fiber Transmission

Anti-Reflection Structured Surfaces

Grazing Incidence Anti-Reflection Coatings

Laser Diode Delivers Atomically-Resolved Images

Photonic-Crystal Planar Antennas

Observation of Intense Far Infrared Picosecond Pulses of Coherent Transition Radiation

A New Family of Self-Modelocked Chromium Doped Solid State Lasers

CW Room-Temperature Blue Upconversion Laser

Concentric-Circle-Grating, Surface-Emitting Semiconductor Lasers

Optical Signal Processing Functions in Laser Diodes: Frequency Division and Multiplication

Frequency-Stabilized Diode-Laser-Pumped Solid State Lasers: Optical Clocks of the Future

Reflections in Christmas Tree Balls

Standards Can Play Role in Scientific Progress