Optical Dephasing and Acoustic Plasmon Undamping in Highly Excited Semiconductors

S.W. Koch, D.C. Scott, and R. Binder

Optical dephasing, i.e., the decay of the polarization field in a semiconductor, is a direct consequence of electron and hole scattering. Under high excitation conditions or in a semiconductor amplifier/laser, carrier-carrier scattering is often the dominant relaxation mechanism, which also leads to energy-level broadening and dynamical screening of the Coulomb interaction potential. The theoretical analysis of carrier-carrier scattering is based on the quantum Boltzmann equation. Even though this equation is well known in the many-body literature, its solution for high excitation conditions and nonequilibrium carrier distributions is a substantial challenge.

This article is only available as a PDF.

Download PDF

Publish Date:

Optical Dephasing and Acoustic Plasmon Undamping in Highly Excited Semiconductors

S.W. Koch, D.C. Scott, and R. Binder

Optical dephasing, i.e., the decay of the polarization field in a semiconductor, is a direct consequence of electron and hole scattering. Under high excitation conditions or in a semiconductor amplifier/laser, carrier-carrier scattering is often the dominant relaxation mechanism, which also leads to energy-level broadening and dynamical screening of the Coulomb interaction potential. The theoretical analysis of carrier-carrier scattering is based on the quantum Boltzmann equation. Even though this equation is well known in the many-body literature, its solution for high excitation conditions and nonequilibrium carrier distributions is a substantial challenge.

Log in or Become a member to view the full text of this article.

This article may be available for purchase via the search at Optica Publishing Group.

Optica Members get the full text of Optics & Photonics News, plus a variety of other member benefits.

Publish Date: 01 December 1992


Add a Comment

Share this Article

ADVERTISEMENT
ADVERTISEMENT

Also in this Issue

Nonlinear Phase Shifts Using Second Order Nonlinearities

Excited State Enhancement of Nonlinear Optical Properties

200 fsec Optical Pulse Generation from a Hybrid Mode-locked Semiconductor Diode Laser-Amplifier System

Propagation-Induced Escape from Adiabatic Following in a Semiconductor

Guiding Light by Light Using Dark Spatial Solitons

Kink Solitons in Nonlinear Optics

Coherent Optical Wavelet Transforms

Femtosecond Waveform Processing via Spectral Holography

Quantum Optics of a Single Molecule in a Solid

New Questions in the Multiphoton Ionization of Atoms

The ac Stark Shifts of High-Lying Rydberg Levels in Intense Electromagnetic Fields

Near-Field Magneto-Optics and High Density Storage

Visible Subwavelength Point Source of Light

Multi-Mode Interference Optical Devices Based on Self-Imaging Effects

Sidelobe-Suppressed Acousto-Optic Filter

Monolithically Integrated 21-Wavelength DFB Laser Array with a Star Coupler and Optical Amplifiers

Monolithic InP Grating-Based Wavelength Division Multiplexing Components

Wavelength Selective Optical Logic

Optical Wavelength Shifter for Wavelength-Division-Multiplexed Networks

Broadband Dispersion Compensation for High-Bit-Rate Fiber Transmission

Anti-Reflection Structured Surfaces

Grazing Incidence Anti-Reflection Coatings

Laser Diode Delivers Atomically-Resolved Images

Photonic-Crystal Planar Antennas

Observation of Intense Far Infrared Picosecond Pulses of Coherent Transition Radiation

A New Family of Self-Modelocked Chromium Doped Solid State Lasers

CW Room-Temperature Blue Upconversion Laser

Concentric-Circle-Grating, Surface-Emitting Semiconductor Lasers

Optical Signal Processing Functions in Laser Diodes: Frequency Division and Multiplication

Frequency-Stabilized Diode-Laser-Pumped Solid State Lasers: Optical Clocks of the Future

Reflections in Christmas Tree Balls

Standards Can Play Role in Scientific Progress

Nonlinear Polarization Beats Spectroscopy