ADVERTISEMENT

Recent Developments in GaAs-Based High-Speed Devices

Naresh Chand and Hadis Morkoc

The recent advances in the crystal growth, device concepts, and fabrication of electronic and optical devices in GaAs and other III-V semiconductors have inspired the scientists in several laboratories to work on combining both types of devices into one circuit to create a new, powerful class of highspeed optoelectronic integrated circuits for optical communications and many other high-speed applications like digital optical computers. Such an approach would enable electronic processing of optical signals on a single chip for such operations as filtering, switching, amplifying, and multiplexing.

This article is only available as a PDF.

Download PDF

Publish Date:

Recent Developments in GaAs-Based High-Speed Devices

Naresh Chand and Hadis Morkoc

The recent advances in the crystal growth, device concepts, and fabrication of electronic and optical devices in GaAs and other III-V semiconductors have inspired the scientists in several laboratories to work on combining both types of devices into one circuit to create a new, powerful class of highspeed optoelectronic integrated circuits for optical communications and many other high-speed applications like digital optical computers. Such an approach would enable electronic processing of optical signals on a single chip for such operations as filtering, switching, amplifying, and multiplexing.

Log in or Become a member to view the full text of this article.

This article may be available for purchase via the search at Optica Publishing Group.

Optica Members get the full text of Optics & Photonics News, plus a variety of other member benefits.

Publish Date: 01 May 1986


Add a Comment

Share this Article

ADVERTISEMENT
ADVERTISEMENT

Also in this Issue

Fiber-optic Sensors for the Chemical Industry

Cosmology: Man's place in the universe

Nondestructive measurement of subsurface structural defects in polished single-crystal silicon

New Designs for Large Telescopes

Thermal Radiometer Cconstructed from Ordinary Office Supplies

Multilayer Mirrors for X-rays and the Extreme UV

Very Large Optics of the Future

Optical Computing at Carnegie-Mellon University

Optical Computing Research at the University of Dayton

Optical Computing Research at Heriot-Watt University

The Role of Optics in Computation

Issues in Optical Computing Research

Approaching the All-Optical Computer

The Optical Computing Process: Revolutionary or Evolutionary?

Binary Optical Computing Architectures

The Optical Margin

Psychological Implications of Parallel Systems

Optical Computing for the Strategic Defense Initiative

Optical Computing: Some Hard Questions

The Future of Fiber Communications: Solitons in an All-Optical System

Nonlinear Optics with a Micrometer-Size Droplet

Chromatographic effluent detection with laser ionization mass spectrometry

Neutral ion beam sputter deposition of high-quality optical films

Optical coatings by the sol-gel process

Coatings for lighting applications

Optical coatings: add-ons or star performers?

More on subcommittees

Laser ionization mass spectrometry in supersonic beams

Laser applications to materials and surface analysis

The Kerr effect

Photothermal methods for detection of molecules in liquids

Imaging with laser scanners

Exploratory research in reflectance and fluorescence standards at the National Bureau of Standards

Resonance ionization mass spectrometry for spectra of rare isotopes

Optics and optical instruments

Tunneling and photoconductivity

Improved calibration standards in laser-Stark spectroscopy

Origin of room-temperature optical nonlinearities in GaAs

A new class of materials for nonlinear optics and nonlinear optical devices

Binary optics: An emerging diffractive optics technology

Squeezed states of light I

Squeezed states of light II

Laser cooling and trapping of atoms

Focused-ion-beam micromachining of optical surfaces

Photon localization