Quantum Technology: Funding the Future

McKinsey & Co. estimates that combined worldwide spending on nonclassified quantum-technology research amounted to around some €1.5 billion in 2015. Here’s how those numbers were distributed globally—and some highlights of government quantum initiatives since then.

*Sum for all E.U. countries including the U.K. as of 2015.
Sources: European Union; U.K. Government Office for Science; National Research Council Canada; National Photonics Initiative, USA.
Infographic by Stewart Wills and Alessia Kirkland

Quantum Applications

Security
Quantum communications can increase data security on networks—reducing the theft of sensitive information and promoting trust.

Communications
Tiny ultra-precise quantum clocks will allow denser communications traffic, and could reduce risk of transmission failures.

Information
It’s believed that quantum computers could ultimately tackle problems out of reach of classical computing algorithms.

Environment
Quantum sensors for measuring gravity could aid flood prevention by providing more accurate monitoring of the water table.

Finance
Financial markets that depend on split-second decisions could benefit from the increase in accuracy of the new generation of atomic clocks.