Excitation of Morphology Dependent Resonances of Microspherical Cavities Using Optical Fibers

Giora Griffel, Stephen Arnold, Dogan Taskent, Microparticle Photophysics and Photonics Laboratories, Polytechnic University, Brooklyn, N.Y., Ali Serpengüzel, Bilkent University, Ankara, Turkey, and John Connolly and Nancy Morris, David Sarnoff Research Center, Princeton, N.J.

Optical cavities are used extensively to enhance processes that depend on the interaction between light and matter due to their strong frequency selectivity and sharp dispersion near resonance. Most of the cavities that are used in optics have relatively large dimensions and modest Qs (<10,000). A new type of optical resonator, which has been the focus of increased attention this year as a possible photonic device, is the spherical dielectric microparticle (SDM).

This article is only available as a PDF.

Download PDF

Publish Date:

Excitation of Morphology Dependent Resonances of Microspherical Cavities Using Optical Fibers

Giora Griffel, Stephen Arnold, Dogan Taskent, Microparticle Photophysics and Photonics Laboratories, Polytechnic University, Brooklyn, N.Y., Ali Serpengüzel, Bilkent University, Ankara, Turkey, and John Connolly and Nancy Morris, David Sarnoff Research Center, Princeton, N.J.

Optical cavities are used extensively to enhance processes that depend on the interaction between light and matter due to their strong frequency selectivity and sharp dispersion near resonance. Most of the cavities that are used in optics have relatively large dimensions and modest Qs (<10,000). A new type of optical resonator, which has been the focus of increased attention this year as a possible photonic device, is the spherical dielectric microparticle (SDM).

Log in or Become a member to view the full text of this article.

This article may be available for purchase via the search at Optica Publishing Group.

Optica Members get the full text of Optics & Photonics News, plus a variety of other member benefits.

Publish Date: 01 December 1995


Add a Comment

Share this Article

ADVERTISEMENT
ADVERTISEMENT

Also in this Issue

Absorption Lineshape and Propagation Effects in Multiple Quantum Well Structures

Spectrodetector: Novel Monolithic Wavelength Meter and Photodetector

Second Harmonic Generation: Toward an All-Optical Transistor

Depth of Focus Enhancement and Twisted Beams Using Radial Harmonic Pupil Filters

Optical Technique for Simulating Severe Phase Distortion Effects on Imaging System Performance

Refraction and Diffraction in the First-Order Born Approximation

High-Efficiency Multilayer Dielectric Diffraction Gratings

Low-Threshold Optical Switching in Non-uniform Nonlinear Distributed Feedback Structures

Optical Characterization of Photonic Microstructures

Experimental Demonstration of Photorefractive Resonator for Adaptive Fault-Tolerant Coupling

Small-Bore Hollow-Glass Waveguides for Broadband, Infrared Transmission

Observation of Two Dimensional Spatial Solitary Waves in a Quadratic Medium

Transmission of Eight 20 Gb/sec Channels over 232 km of Conventional Single-Mode Fiber

Multiple Colliding Pulse Mode-Locked Quantum Well Lasers

Micromachined Wavelength Tunable Optoelectronic Devices with Record Tuning

Enhanced Nonlinear Optical Response of Nano-Composite Materials

Polarization Dependence of Ultrafast Nonlinear Refraction in Semiconductors at the Half-Bandgap

Holographic Grating Formation in dye- or Fullerene-C60-Doped Liquid Crystals

Quasi-Phasematched Optical Parametric Oscillators in Periodically Poled LiNbO3

Gain Theory of Wide Gap Semiconductors

High Brightness, Eye-safe Lasers

Young's Double-Slit Interferometry within an Atom

Gain in Strongly Confined Quantum Dots

Visual System Modeling: Putting the Pieces Together

Watching Proteins Fold with Transient Laser Spectroscopy

Magnetic Resonance Imaging with Laser-Polarized Noble Gases

Signal Processing Using Wavelet Transforms

Optical Information Processing Using Free Space Interconnects And Smart Pixel Arrays