• William Wheeler. “Apparatus for lighting dwellings or other structures,” US Patent 247,227, filed 10 December 1880; issued 20 September 1881.
  • C.C. Eaglesfield. “Optical pipeline, a tentative assessment,” Proc. IEE, 109B, 26 (1962).
  • E. Marcatili and R. Schmeltzer. “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783 (1964).
  • P. Kaiser et al. “A new optical fiber,” Bell Syst. Tech. J. 52(2), 265 (Feb. 1973). 
  • T. Hidaka et al. “Hollow-core oxide-glass cladding optical fibers for middle infrared region,” J. Appl. Phys. 52, 4467 (1981).
  • S.J. Saggese et al. “Attenuation of incoherent infrared radiation in hollow sapphire and silica waveguides,” Opt. Lett. 16, 27 (1991).
  • J.L. Archambault et al. “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11, 416 (1993).
  • J.C. Knight et al. “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547 (1996).
  • J.C. Knight et al. “All-silica single-mode optical fiber with photonic crystal cladding: errata,” Opt. Lett. 22, 484 (1997).
  • T.A. Birks et al. “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961 (1997).
  • J.C. Knight et al. “Photonic band gap guidance in optical fibers,” Science 282, 1476 (1998).
  • R.F. Cregan et al. “Single-mode photonic bandgap guidance of light in air,” Science 285, 1537 (1999).
  • N. Venkataraman et al. “Low loss (13 dB/km) air core photonic band gap fibre,” postdeadline paper PD1.1, ECOC 2002.
  • B. Temelkuran et al. “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650 (2002).
  • J. Knight. “Photonic crystal fibres,” Nature 424, 847 (2003).
  • P. Russell. “Photonic crystal fibers,” Science 299, 358 (2003).
  • B.J. Mangan et al. “Low loss (1.7 dB/km) hollow-core photonic bandgap fiber,” postdeadline paper PDP24, OFC 2004, Los Angeles, Feb. 22-27, 2004.
  • P.J. Roberts et al. “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236 (2005).
  • F. Poletti et al. “The effect of core asymmetries on the polarization properties of hollow core photonic band gap fibers,” Opt. Express 13, 9115 (2005).
  • G.A. Sanders et al. “Hollow core fiber optic ring resonator for rotation sensing,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ME6.
  • F. Couny et al. “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118 (2007).
  • Y.Y. Wang et al. “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36, 669 (2011).
  • F. Poletti et al. “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photon. 7, 279 (2013).
  • W. Belardi and J.C. Knight. “Effect of core boundary curvature on the confinement losses of hollow anti-resonant fibers,” Opt. Express 21, 21912 (2013)
  • J.M. Fini et al. “37-cell hollow-core-fiber designs with improved single-modedness,” in CLEO: 2014, OSA Technical Digest (online), Optical Society of America, 2014, paper SM1N.2.
  • W. Belardi and J.C. Knight. “Hollow antiresonant fibers with reduced attenuation,” Opt. Lett. 39, 1853 (2014).
  • F. Poletti. “Nested anti-resonant nodeless hollow core fiber,” Opt. Express 22, 23807 (2014).
  • W. Belardi. “Design and properties of hollow antiresonant fibers for the visible and near infrared spectral range,” J. Lightwave Technol. 33, 4497 (2015).
  • B. Debord et al. “ Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4, 209 (2017).
  • T.D. Bradley et al. “Record low-loss 1.3 dB/km data transmitting antiresonant hollow core fibre,” ECOC 2018, paper TH3F2.
  • T.D. Bradley et al. “Antiresonant hollow core fibre with 0.65 dB/km attenuation across the C and L telecommunication bands,” postdeadline paper PD.3.1, presented at ECOC 2019, Dublin, Ireland.
  • G.T. Jasion et al. “Hollow-core NANF with 0.28 dB/km attenuation in the C and L bands,” OFC 2020, paper Th4B.4.
  • B. Zhu et al. “First demonstration of hollow-core-fiber cable for low latency data transmission,” OFC 2020, paper Th4B.3.
  • H. Sakr et al. “Hollow core optical fibres with comparable attenuation to silica fibres between 600 and 1100 nm,” Nat. Commun. 11, 6030 (2020).