Skip To Content
ADVERTISEMENT

References and Resources

Applications of static metasurfaces

O. Quevedo-Teruel et al. “Roadmap on metasurfaces,” J. Opt. 21, 073002 (2019).

A.M. Urbas et al. “Roadmap on optical metamaterials,” J. Opt. (United Kingdom) 18, 093005 (2016).

Y. Zhao and A. Alù. “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84, 205428 (2011).

D. Lin, P. Fan, E. Hasman and M.L. Brongersma. “Dielectric gradient metasurface optical elements,” Science 345, 298 (2014).

Y. Yao et al. “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett 14, 6532 (2014).

The need for dynamic tuning

V. Sasikala and K. Chitra. “All optical switching and associated technologies: A review,” J. Opt. 47, 307 (2018).

A.M. Shaltout et al. “Spatiotemporal light control with frequency-gradient metasurfaces,” Science 365, 374 (2019).

M. Liu, A.B. Kozyrev and I.V. Shadrivov. “Time-varying metasurfaces for broadband spectral camouflage,” Phys. Rev. Appl. 12, 054052 (2019).

Different modulation mechanisms

Mechanical actuation

X. Zhao, G. Duan, A. Li, C. Chen and X. Zhang. “Integrating microsystems with metamaterials towards metadevices,” Microsystems Nanoeng. 5, 5 (2019).

S. He, H. Yang, Y. Jiang, W. Deng and W. Zhu. “Recent advances in MEMS metasurfaces and their applications on tunable lens,” Micromachines 10, 505 (2019).

E. Arbabi et al. “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9, 812 (2018).

S.C. Malek, H.-S. Ee and R. Agarwal. “Strain multiplexed metasurface holograms on a stretchable substrate,” Nano Lett. 17, 3641 (2017).

L. Xu et al. “Kirigami nanocomposites as wide-angle diffraction gratings,” ACS Nano 10, 6156 (2016).

T.C. Shyu et al. “A kirigami approach to engineering elasticity in nanocomposites through patterned defects,” Nat. Mater. 14, 785 (2015).

C.W. Lee, H. J. Choi and H. Jeong. “Tunable metasurfaces for visible and SWIR applications,” Nano Converg. 7, 3 (2020).

Q. He, S. Sun, and L. Zhou. “Tunable/reconfigurable metasurfaces: Physics and applications,” Research 2019, 1849272 (2019).

Liquid crystals and phase change media (VO2 and GST)

J. Li, P. Yu, S. Zhang and N. Liu. “Electrically-controlled digital metasurface device for light projection displays,” Nat. Commun. 11, 3574 (2020).

A. Lininger et al. “Optical properties of metasurfaces infiltrated with liquid crystals,” Proc. Natl. Acad. Sci. U.S.A. 117, 20390 (2020).

M.T. Nouman et al. “Vanadium dioxide based frequency tunable metasurface filters for realizing reconfigurable terahertz optical phase and polarization control,” Opt. Express 26, 12922 (2018).

F. Ding, Y. Yang and S. I. Bozhevolnyi. “Dynamic metasurfaces using phase‐change chalcogenides,” Adv. Opt. Mater. 7, 1801709 (2019).

A. Tittl et al. “A switchable mid‐infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27, 4597 (2015).

M. Wuttig, H. Bhaskaran and T. Taubner. “Phase-change materials for non-volatile photonic applications,” Nat. Photon. 11, 465 (2017).

Y. Kim et al. “Phase modulation with electrically tunable vanadium dioxide phase-change metasurfaces,” Nano Lett. 19, 3961 (2019).

M.A. Kats et al. “Vanadium dioxide as a natural disordered metamaterial: Perfect thermal emission and large broadband negative differential thermal emittance,” Phys. Rev. X 3, 041004 (2013).

R. Jeyasingh et al. “Ultrafast characterization of phase-change material crystallization properties in the melt-quenched amorphous phase,” Nano Lett. 14, 3419 (2014).

N. Raeis-Hosseini and J. Rho. “Metasurfaces based on phase-change material as a reconfigurable platform for multifunctional devices,” Materials (Basel) 10, 1046 (2017).

Y. Zhang et al. “Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material,” Nat. Nanotechnol., doi: 10.1038/s41565-021-00881-9 (2021).

K. Chaudhary et al. “Polariton nanophotonics using phase-change materials,” Nat. Commun. 10, 4487 (2019).

M.Y. Shalaginov et al. “Reconfigurable all-dielectric metalens with diffraction-limited performance,” Nat. Commun. 12, 1225 (2021).

Electrical control

X. Liu et al. “Tuning of plasmons in transparent conductive oxides by carrier accumulation,” ACS Photon. 5, 1493 (2018).

G.K. Shirmanesh, R. Sokhoyan, P.C. Wu and H.A. Atwater. “Electro-optically tunable multifunctional metasurfaces,” ACS Nano 14, 6912 (2020).

J. Park et al. “All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications,” Nat. Nanotechnol. 16, 69 (2020).

K. Thyagarajan, R. Sokhoyan, L. Zornberg and H.A. Atwater. “Millivolt modulation of plasmonic metasurface optical response via ionic conductance,” Adv. Mater. 29, 1701044 (2017).

M. Jung et al. “Polarimetry using graphene-integrated anisotropic metasurfaces,” ACS Photon. 5, 4283 (2018).

Y.-W.W. Huang et al. “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319 (2016).

A. Anopchenko, L. Tao, C. Arndt and H.W.H. Lee. “Field-effect tunable and broadband epsilon-near-zero perfect absorbers with deep subwavelength thickness,” ACS Photon. 5, 2631 (2018).

Optical control

M. Clerici et al. “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8, 15829 (2017).

M.R. Shcherbakov et al. “Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces,” Nat. Commun. 8, 17 (2017).

Y. Yang et al. “Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber,” Nat. Photon. 11, 390 (2017).

Z. Chai et al. “Ultrafast all-optical switching,” Adv. Opt. Mater. 5, 1600665 (2017).

N. Kinsey et al. “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2, 616 (2015).

P. Guo, R.D. Schaller, J.B. Ketterson and R.P.H.H. Chang. “Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude,” Nat. Photon. 10, 267 (2016).

C. Husko et al. “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111 (2009).

S. Saha et al. “Broadband, high‐speed, and large‐amplitude dynamic optical switching with yttrium‐doped cadmium oxide,” Adv. Funct. Mater. 30, 1908377 (2020).

S. Saha et al. “Extraordinarily large permittivity modulation in zinc oxide for dynamic nanophotonics,” Mater. Today 43, 27 (2020).

New physics

M. R. Shcherbakov et al. “Photon acceleration and tunable broadband harmonics generation in nonlinear time-dependent metasurfaces,” Nat. Commun. 10, 1345 (2019).

Y. Zhou et al. “Broadband frequency translation through time refraction in an epsilon-near-zero material,” Nat. Commun. 11, 2180 (2020).

V. Bruno et al. “Broad frequency shift of parametric processes in epsilon-near-zero time-varying media,” Appl. Sci. 10, 1318 (2020).

D. Ramaccia, D. L. Sounas, A. Alù, A. Toscano and F. Bilotti. “Doppler cloak restores invisibility to objects in relativistic motion,” Phys. Rev. B 95, 075113 (2017).

X. Guo, Y. Ding, Y. Duan and X. Ni. “Nonreciprocal metasurface with space–time phase modulation,” Light Sci. Appl. 8, 123 (2019).

The meta-future

Limits of permittivity tuning

Y.-W.W. Huang et al. “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16, 5319 (2016).

S. Saha et al. “Extraordinarily large permittivity modulation in zinc oxide for dynamic nanophotonics,” Mater. Today 43, 27 (2020).

H. Reddy et al. “Temperature-dependent optical properties of plasmonic titanium nitride thin films,” ACS Photon. 4, 1413 (2017).

High-Q-factor metasurfaces

M. Lawrence et al. “High quality factor phase gradient metasurfaces,” Nat. Nanotechnol. 15, 956 (2020).

O. Reshef et al. “Multiresonant high-Q plasmonic metasurfaces,” Nano Lett. 19, 6429 (2019).

New modulation methods

X. Duan, S. Kamin and N. Liu. “Dynamic plasmonic colour display,” Nat. Commun. 8, 14606 (2017).

U. Koch, C. Hoessbacher, A. Emboras and J. Leuthold. “Optical memristive switches,” J. Electroceramics 39, 239 (2017).

M. Pohl et al. “Tuning of the transverse magneto-optical Kerr effect in magneto-plasmonic crystals,” New J. Phys. 15, 075024 (2013).

Machine learning

J. Jiang and J.A. Fan. “Global optimization of dielectric metasurfaces using a physics-driven neural network,” Nano Lett. 19, 5366 (2019).

Z.A. Kudyshev, A.V. Kildishev, V.M. Shalaev and A. Boltasseva. “Machine-learning-assisted metasurface design for high-efficiency thermal emitter optimization,” Appl. Phys. Rev. 7, 021407 (2020).

References for table, p. 37

Mechanical: S. He et al. (2019); E. Arbabi et al. (2018); L. Xu et al. (2016); T.C. Shyu et al. (2015); C.W. Lee et al. (2020); Q. He et al. (2019).

Phase-change: J. Li et al. (2020); A. Lininger et al. (2020); M.T. Nouman et al. (2018); F. Ding et al. (2019); A. Tittl et al. (2015); Y. Kim et al. (2019); M.A. Kats et al. (2014); S. Xiao et al. (2020); R. Jeyasingh et al. (2014); N. Raeis-Hosseini and J. Rho (2017).

Electrical: J. Park et al. (2020); M. Jung et al. (2018); A.M. Shaltout et al. (2019); Y.-W.W. Huang et al. (2016); A. Anopchenko et al. (2018); M. Morea et al. (2018).

Optical: Q. He et al. (2019); Z. Chai et al. (2017); N. Kinsey et al. (2015); P. Guo et al. (2016); C. Husko et al. (2009); S. Saha et al., Adv. Funct. Mater. (2020); S. Saha et al., Mater. Today (2020).

Add a Comment