ADVERTISEMENT
ADVERTISEMENT

Integrated Enhanced Epitaxy of Optoelectronic Materials

S. M. Bedair

Integrated optical and electronic devices require the fabrication of many different components, each with its own material and structural requirements, on one chip. To achieve optimum performance of an integrated device, each individual device structure should fulfill its optimum material, thickness, and doping requirements. Current activities in device integration have relied mainly on the same multilayer structure to fabricate the different optical and electronic components. Thus, a single or multilayer structure that is optimum for one particular device—for example, a field-effect transistor (FET)— might not satisfy the device structure required for a detector or laser.

This article is only available as a PDF.

Download PDF

Publish Date:

Integrated Enhanced Epitaxy of Optoelectronic Materials

S. M. Bedair

Integrated optical and electronic devices require the fabrication of many different components, each with its own material and structural requirements, on one chip. To achieve optimum performance of an integrated device, each individual device structure should fulfill its optimum material, thickness, and doping requirements. Current activities in device integration have relied mainly on the same multilayer structure to fabricate the different optical and electronic components. Thus, a single or multilayer structure that is optimum for one particular device—for example, a field-effect transistor (FET)— might not satisfy the device structure required for a detector or laser.

Log in or Become a member to view the full text of this article.

This article may be available for purchase via the search at Optica Publishing Group.

Optica Members get the full text of Optics & Photonics News, plus a variety of other member benefits.

Publish Date: 01 June 1992


Add a Comment

Share this Article

ADVERTISEMENT
ADVERTISEMENT