Below are the references from the OPN September 2017 feature article, “Optics on the Go.”
 

Smart glasses and AR vision

  1. https://www.forbes.com/sites/quora/2017/01/09/how-do-augmented-reality-displays-work/
  2. I.E. Sutherland, "A head-mounted three-dimensional display," in AFIPS Proc. Fall Joint Computer Conf. 33, 757–64 (1968).
  3. J. Melzer "Head mounted displays," Mac Graw, Hill (1997) (ISBN 978-1456563493).
  4. S. Yamazaki et al. "Thin wide-field-of-view HMD with free-form-surface prism and applications," in Stereoscopic Displays and Virtual Reality Systems VI, 3639, SPIE, San Jose, CA, USA, 453-462 (1999).
  5. J. Rolland and O. Cakmacki, "Head-worn displays: The future through new eyes," Optics and Photonics News, 4, 21-27 (2009).
  6. O. Cakmakci and J. Rolland, "Head-worn displays: a review," Journal of Display Technology 2, 3 (2006).
  7. H. Hua and B. Javidi, "Augmented reality: easy on the eyes," Optics and Photonics News, 2 (2015).
  8. D. Cheng, H. Hua, et al, "Design of an optical see through head mounted display," Applied Optics 48, 14 (2009).
  9.  H. Mukawa et al. “A full-color eyewear display using planar waveguides with reflection volume holograms,” JSID 17, 3, 185-193 (2009).
  10. P. Ayras, et al. “Exit pupil expander with a large field of view based on diffractive optics,” JSID 17, 8, 659-664 (2009).
  11. B. Kress, M. Shin, "Diffractive and holographic optics as optical combiners in head mounted displays," Proc. UbiComp, Sept. 8–12, Zurich, Switzerland (2013).
  12.  A. Maimone et al., “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graphics 36, 4 (2017).
  13. N. Yu and F. Capasso, "Flat optics with designer metasurfaces," Nature Materials 13, 139–150 (2014).
  14. M. Khorasaninejad et al. "Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion," Nano Letters 17, 3, 1819–1824 (2017).
  15. Hsu, Chia Wei, et al. "Transparent displays enabled by resonant nanoparticle scattering," Nature Communications 5, 3152 (2014).
  16. M. Yamaguchi, “Light-field and holographic three-dimensional displays,” JOSA-A 33, 12, 2348-2364 (2016).

Active-color-changing textiles

  1. Yetisen, A. K. et al. Nanotechnology in textiles. ACS Nano 10, 3042-3068 (2016).
  2. Tao, X. Wearable electronics and photonics.  (Elsevier, 2005).
  3. Spigulis, J., Pfafrods, D., Stafeckis, M. & Jelinska-Platace, W. in International Conference on Advanced Optical Materials and Devices.  231-236 (International Society for Optics and Photonics).
  4. Harlin, A., Makinen, M. & Vuorivirta, A. Development of polymeric optical fibre fabrics as illumination elements and textile displays. Autex Res J 3, 1-8 (2003).
  5. Dupuis, A. et al. Guiding in the visible with. Optics letters 32, 2882-2884 (2007).
  6. Pone, E. et al. Drawing of the hollow all-polymer Bragg fibers. Optics express 14, 5838-5852 (2006).
  7. Gao, Y. et al. Consecutive solvent evaporation and co-rolling techniques for polymer multilayer hollow fiber preform fabrication. Journal of materials research 21, 2246-2254 (2006).
  8. Gauvreau, B. et al. Color-changing and color-tunable photonic bandgap fiber textiles. Optics express 16, 15677-15693 (2008).
  9. Sayed, I., Berzowska, J. & Skorobogatiy, M. Jacquard-woven photonic bandgap fiber displays. Research Journal of Textile and Apparel 14, 97-105 (2010).

Inward and outward monitoring

  1. "Lamp intensity control," I.B.M. Technical Disclosure Bulletin, 8, 8 (1966).
  2. M. Shamir, L. A. Eidelman, Y. Floman, L. Kaplan, and R. Pi-zov, "Pulse oximetry plethysmographic waveform during changes in blood volume," Br. J. Anaesth., 82, 178-181, 1999.
  3. P. Klein, M. Hirth, S. Gröber, J. Kuhn, and A. Müller, "Classical experiments revisited: smartphones and tablet PCs as experimental tools in acoustics and optics," Phys. Educ. 49, 412–418 (2014).
  4. J. Spigulis, "Biophotonic technologies for non-invasive assessment of skin condition and blood microcirculation," Latv. J. Phys. Tech. Sci. 49, 63–80 (2012).
  5. J. Allen, "Photoplethysmography and its application in clinical physiological measurement," Physiol. Meas. 28, R1–R39 (2007).
  6. T. Tamura, Y. Maeda, M. Sekine, and M. Yoshida, "Wearable photoplethysmographic sensors—past and present," Electronics 3, 282–302 (2014).
  7. N. Ozana, N. Arbel, Y. Beiderman, V. Mico, M. Sanz, J. Garcia, A. Anand, B. Javidi, Y. Epstein, and Z. Zalevsky, "Improved noncontact optical sensor for detection of glucose concentration and indication of dehydration level," Biomed. Opt. Express 5, 1926 (2014).
  8. M. Nemati, C. N. Presura, H. P. Urbach, and N. Bhattacharya, "Dynamic light scattering from pulsatile flow in the presence of induced motion artifacts," Biomed. Opt. Express 5, 2145 (2014).
  9. M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, S. J. Kim, S. I. Chae, T.-H. Kim, J. H. Kim, T. Hyeon, and D.-H. Kim, "Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing," Nat. Commun. 6, 7149 (2015).

Solar energy generation and storage

  1. MIT Energy Initiative, The Future of Solar Energy (2015).
  2. http://littlesun.com/wp/wp-content/uploads/2016/04/LS_TechSpecs_Little-Sun-Original_dimmer.pdf
  3. K. Trautz, P. Jenkins, R. Walters, D. Scheiman, R. Hoheisel, R. Tatavarti, R. Chan, H. Miyamoto, J. Adams, V. Elarde, C. Stender, A. Hains, C. McPheeters, C. Youtsey, N. Pan, and M. Osowski, "High efficiency flexible solar panels," in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 0115–0119.
  4. http://www.pvsolar.com/global/ppdesert.html
  5. https://www.parc.com/content/attachments/solar_blanket_1_side_parc.pdf
  6. http://science.dodlive.mil/2013/05/07/top-tech-solar-blankets/
  7. M.R. Lee, R.D. Eckert, K. Forberich, G. Dennler, C.J. Brabec, R.A. Gaudiana, "Solar power wires based on organic photovoltaic materials." Science, 324, 5924, 232-235 (2009).
  8. K. Jost, G. Dion, Y. Gogotsi, “Textile energy storage in perspective,” J. Mater. Chem. A 2014, 2, 10776 (2014).

Passive wearable technologies

  1. A. H. Munsell, "A pigment color system and notation," Am. J. Psychol. 23, 236 (1912).
  2. L. Goria, "Footwear with detachable visibility aids," U.S. patent US4712319 A (1987).
  3. A. Conan Doyle, "The Hound of the Baskervilles", George Newnes Publ., 1902.
  4. C. W. Mason, "Structural colors in insects," J. Phys. Chem. 31, 1856–1872 (1926).
  5. American Chemical Society, "Opal: made of water and quartz, but filled with fire," Chem. Eng. News, 81(4) 59 (2003).
  6. P.J. Darragh, A.J. Gaskin. "Opaline materials and method of preparation." U.S. Patent No. 3,497,367. 24 Feb. 1970.
  7. N. Kenkichi, "Structurally colored fiber morphotex." Ann. High Perform. Paper Soc. Jpn 43, 17-21 (2005).
  8. F. Zhang, Q. Shen, X. Shi, S. Li, W. Wang, Z. Luo, G. He, P. Zhang, P. Tao, C. Song, W. Zhang, D. Zhang, T. Deng, and W. Shang, "Infrared detection based on localized modification of Morpho butterfly wings.," Adv. Mater. 27, 1077–82 (2015).
  9. J. J. Amsden, H. Perry, S. V Boriskina, A. Gopinath, D. L. Kaplan, L. Dal Negro, and F. G. Omenetto, "Spectral analysis of induced color change on periodically nanopatterned silk films.," Opt. Express 17, 21271–21279 (2009).
  10. ASTM International West Conshohocken PA, "ASTM Standard G173-03: Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface," (2008).
  11. E. Coser, V. F. Moritz, A. Krenzinger, C. A. Ferreira, E. Coser, V. F. Moritz, A. Krenzinger, and C. A. Ferreira, "Development of paints with infrared radiation reflective properties," Polímeros 25, 305–310 (2015).
  12. https://www.tfl.com/en/technologies/tfl-cool-tec/technology/
  13. http://blog.tacupgear.com/2015/10/23/ir-and-flir-patches-release/
  14. R. M. Gooliak, "Thermal blanket including a radiation layer," U.S. patent US20030060107 A1 (2003).
  15. http://www.columbia.com/technology-omniheatreflective/
  16. P.-C. Hsu, X. Liu, C. Liu, X. Xie, H. R. Lee, A. J. Welch, T. Zhao, and Y. Cui, "Personal thermal management by metallic nanowire-coated textile," Nano Lett. 15, 365–371 (2015).
  17. J. K. Tong, X. Huang, S. V. Boriskina, J. Loomis, Y. Xu, and G. Chen, "Infrared-transparent visible-opaque fabrics for wearable personal thermal management," ACS Photonics 2, 769–778 (2015).
  18. P.-C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, "Radiative human body cooling by nanoporous polyethylene textile," Science 353 (2016).
  19. S. V. Boriskina, "Nanoporous fabrics could keep you cool," Science 353, 986–987 (2016).
  20. N. N. Shi, C.-C. Tsai, F. Camino, G. D. Bernard, N. Yu, and R. Wehner, "Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants.," Science 349, 298–301 (2015).
  21. Q. Willot, P. Simonis, J.-P. Vigneron, S. Aron, M. Rassart, and T. Seldrum, "Total internal reflection accounts for the bright color of the Saharan silver ant," PLoS One 11, e0152325 (2016).
  22. S. R. Anderson, M. Mohammadtaheri, D. Kumar, A. P. O’Mullane, M. R. Field, R. Ramanathan, and V. Bansal, "Robust nanostructured silver and copper fabrics with localized surface plasmon resonance property for effective visible light induced reductive catalysis," Adv. Mater. Interfaces 3, 1500632 (2016).