ADVERTISEMENT
ADVERTISEMENT

Soft x-ray projection lithography

Bell Lab Soft X-ray Projection Lithography Group

As the VLSI (very large scale integration) industry demands cameras that can produce images of ever greater resolution, lithographic technology has responded by developing lenses capable of diffraction limited imaging. When the need arose for sub-half micron features, the industry sought higher resolution by using shorter wavelengths, the near UV in the mercury i-line at 365 nm, and soon the deep UV using excimer lasers at 248 nm and, eventually, perhaps even 193 nm. However, as we increase resolution we decrease the depth of focus, and patterns produced by poorly focused imaging is a major source of defects in the final circuits.

This article is only available as a PDF.

Download PDF

Publish Date:

Soft x-ray projection lithography

Bell Lab Soft X-ray Projection Lithography Group

As the VLSI (very large scale integration) industry demands cameras that can produce images of ever greater resolution, lithographic technology has responded by developing lenses capable of diffraction limited imaging. When the need arose for sub-half micron features, the industry sought higher resolution by using shorter wavelengths, the near UV in the mercury i-line at 365 nm, and soon the deep UV using excimer lasers at 248 nm and, eventually, perhaps even 193 nm. However, as we increase resolution we decrease the depth of focus, and patterns produced by poorly focused imaging is a major source of defects in the final circuits.

Log in or Become a member to view the full text of this article.

This article may be available for purchase via the search at Optica Publishing Group.

Optica Members get the full text of Optics & Photonics News, plus a variety of other member benefits.

Publish Date: 10 May 1991


Add a Comment

Share this Article

ADVERTISEMENT
ADVERTISEMENT