Infrared Streak Camera

Streak cameras are being used in many fields of science because of their excellent time resolution and high sensitivity. The spectral range at which conventional streak camera systems operate is limited by the spectral response of their particular photocathode. For most photocathode materials, sensitivity is limited to wavelengths shorter than 1.5 μm. Beyond this, the quantum efficiency of the photocathode becomes negligible. Therefore, the temporal profile of mid- and far-infrared light pulses, e.g., from IR laser systems, cannot be measured directly using a conventional streak camera.

Become a member or log in to view the full text of this article.

OSA Members get the full text of Optics & Photonics News, plus a variety of other member benefits.

Publish Date:

Infrared Streak Camera

Streak cameras are being used in many fields of science because of their excellent time resolution and high sensitivity. The spectral range at which conventional streak camera systems operate is limited by the spectral response of their particular photocathode. For most photocathode materials, sensitivity is limited to wavelengths shorter than 1.5 μm. Beyond this, the quantum efficiency of the photocathode becomes negligible. Therefore, the temporal profile of mid- and far-infrared light pulses, e.g., from IR laser systems, cannot be measured directly using a conventional streak camera.

This article is only available as a PDF.

Download PDF

Publish Date:


Add a Comment

ADVERTISEMENT
ADVERTISEMENT