Massive Soliton WDM Transmission at N × 10 Gbit/sec, Error-free Over Transoceanic Distances

We have demonstrated massive wavelength division multiplexing (WDM), over transoceanic distances, in multiples of 10 Gbit/sec. The vital ingredients to this success were first, solitons, second, sliding-frequency guiding filters, and third, the use of "dispersion-tapered" fiber spans between amplifiers, i.e., spans for which D(z) tends to follow (here in step-wise approximation), the same exponential decay profile as the signal energy. Although the first two ingredients and their benefits are by now well known, the third, at least in this context, is both novel and vital.

Become a member or log in to view the full text of this article.

OSA Members get the full text of Optics & Photonics News, plus a variety of other member benefits.

Publish Date:

Massive Soliton WDM Transmission at N × 10 Gbit/sec, Error-free Over Transoceanic Distances

We have demonstrated massive wavelength division multiplexing (WDM), over transoceanic distances, in multiples of 10 Gbit/sec. The vital ingredients to this success were first, solitons, second, sliding-frequency guiding filters, and third, the use of "dispersion-tapered" fiber spans between amplifiers, i.e., spans for which D(z) tends to follow (here in step-wise approximation), the same exponential decay profile as the signal energy. Although the first two ingredients and their benefits are by now well known, the third, at least in this context, is both novel and vital.

This article is only available as a PDF.

Download PDF

Publish Date:


Add a Comment

ADVERTISEMENT
ADVERTISEMENT