Compact and Parallel Free-Space Optoelectronic Interconnection and Logic Operations with Optical Thyristors

For several years there has been a realization that electronics is facing limits in both the speed and parallelism that may be achieved with conventional wiring. This is particularly apparent for chip-to-chip and board-to-board interconnects. Optics has been widely studied as a suitable high-speed interconnection medium to overcome this interconnection bottleneck. It is attractive due to its better immunity to capacitative and inductive crosstalk, signal dispersion, and electromagnetic interference.

Become a member or log in to view the full text of this article.

OSA Members get the full text of Optics & Photonics News, plus a variety of other member benefits.

Publish Date:

Compact and Parallel Free-Space Optoelectronic Interconnection and Logic Operations with Optical Thyristors

For several years there has been a realization that electronics is facing limits in both the speed and parallelism that may be achieved with conventional wiring. This is particularly apparent for chip-to-chip and board-to-board interconnects. Optics has been widely studied as a suitable high-speed interconnection medium to overcome this interconnection bottleneck. It is attractive due to its better immunity to capacitative and inductive crosstalk, signal dispersion, and electromagnetic interference.

This article is only available as a PDF.

Download PDF

Publish Date:


Add a Comment

ADVERTISEMENT
ADVERTISEMENT