Wavelength Selective Optical Logic

Increasing interest in digital opto-electronic circuits for optical communication systems and potential optical computing applications has created a demand for new device structures capable of optical input/output. Novel designs for photonic switching1 enabling multiple functions in a single device are desirable for reducing the complexity of optical receivers and transmitters, as well as for avoiding additional time delays due to interconnects. Wavelength-division-multiplexing (WDM) technology, by which multiple optical channels can be transmitted without any interference, is one of the major advantages of the optical signal transmission.

Become a member or log in to view the full text of this article.

OSA Members get the full text of Optics & Photonics News, plus a variety of other member benefits.

Publish Date:

Wavelength Selective Optical Logic

Increasing interest in digital opto-electronic circuits for optical communication systems and potential optical computing applications has created a demand for new device structures capable of optical input/output. Novel designs for photonic switching1 enabling multiple functions in a single device are desirable for reducing the complexity of optical receivers and transmitters, as well as for avoiding additional time delays due to interconnects. Wavelength-division-multiplexing (WDM) technology, by which multiple optical channels can be transmitted without any interference, is one of the major advantages of the optical signal transmission.

This article is only available as a PDF.

Download PDF

Publish Date:


Add a Comment

ADVERTISEMENT
ADVERTISEMENT